首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8750篇
  免费   631篇
  国内免费   1340篇
  2024年   19篇
  2023年   160篇
  2022年   252篇
  2021年   320篇
  2020年   361篇
  2019年   344篇
  2018年   294篇
  2017年   285篇
  2016年   313篇
  2015年   268篇
  2014年   366篇
  2013年   716篇
  2012年   323篇
  2011年   412篇
  2010年   299篇
  2009年   498篇
  2008年   509篇
  2007年   449篇
  2006年   422篇
  2005年   428篇
  2004年   302篇
  2003年   281篇
  2002年   271篇
  2001年   203篇
  2000年   188篇
  1999年   189篇
  1998年   158篇
  1997年   157篇
  1996年   167篇
  1995年   157篇
  1994年   189篇
  1993年   167篇
  1992年   150篇
  1991年   124篇
  1990年   140篇
  1989年   105篇
  1988年   74篇
  1987年   71篇
  1986年   79篇
  1985年   102篇
  1984年   97篇
  1983年   44篇
  1982年   48篇
  1981年   35篇
  1980年   34篇
  1979年   36篇
  1978年   27篇
  1977年   45篇
  1976年   21篇
  1975年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The antimicrobial activity of plant extract of Peganum harmala, a medicinal plant has been studied already. However, knowledge about bacterial diversity associated with different parts of host plant antagonistic to different human pathogenic bacteria is limited. In this study, bacteria were isolated from root, leaf and fruit of plant. Among 188 bacterial isolates isolated from different parts of the plant only 24 were found to be active against different pathogenic bacteria i.e. Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecium, Enterococcus faecalis and Pseudomonas aeruginosa. These active bacterial isolates were identified on the basis of 16S rRNA gene analysis. Total population of bacteria isolated from plant was high in root, following leaf and fruit. Antagonistic bacteria were also more abundant in root as compared to leaf and fruit. Two isolates (EA5 and EA18) exhibited antagonistic activity against most of the targeted pathogenic bacteria mentioned above. Some isolates showed strong inhibition for one targeted pathogenic bacterium while weak or no inhibition for others. Most of the antagonistic isolates were active against MRSA, following E. faecium, P. aeruginosa, E. coli and E. faecalis. Taken together, our results show that medicinal plants are good source of antagonistic bacteria having inhibitory effect against clinical bacterial pathogens.  相似文献   
2.
Case histories and proposed mechanisms formicrobiologically influenced corrosion of metals andalloys by metal depositing microorganisms arereviewed. Mechanisms with indirect participation ofthese microorganisms, usually iron- and manganeseoxidizing species, are distinguished from anothermechanism which accounts specifically for theelectrochemical properties of deposits containingoxides and hydroxides of Mn in higher oxidationstates. The possible influence of such deposits whichwere formed microbiologically is evaluated. Theevaluation is based on the principles ofelectrochemical corrosion of metals and on theelectrochemical properties of Mn3+/4+- compounds.After briefly reviewing the microbiologicalMn-oxidation, experimental evidence for the predictedcorrosion by such deposits is provided and a model formicrobiologically influenced corrosion by manganeseoxidizing microorganisms is proposed for stainlesssteel. Possible consequences of the model andpractical aspects of such a corrosion are discussed.  相似文献   
3.
Microalgae-nitrifying bacteria consortia have gained attention because photooxygenation of algae can supply oxygen to bacteria which eliminates the need for costly mechanical aeration. However, nitrifying bacteria are known to suffer from photoinhibition. In this study, we developed “Light-shielding hydrogel”, in which bacteria were immobilized in hydrogel and light-shielding particles (carbon black) were incorporated, and evaluated its effectiveness to mitigate photoinhibition for bacteria under strong light irradiation. For comparison, “Hydrogel”, in which bacteria were immobilized in hydrogel without carbon black, and “Dispersion” which was simply suspended bacteria were prepared. At 1600 μmol photons m−2 s–1, the nitrification performance markedly decreased to 15.1 and 48.0% compared to the dark condition in the Dispersion and the Hydrogel, respectively. Meanwhile, it was successfully maintained for the Light-shielding hydrogel. Our results showed that the effectiveness of light-shielding hydrogel to mitigate photoinhibition on nitrifying bacteria even under strong light irradiation.  相似文献   
4.
Frankia is the diverse bacterial genus that fixes nitrogen within root nodules of actinorhizal trees and shrubs. Systematic and ecological studies of Frankia have been hindered by the lack of morphological, biochemical, or other markers to readily distinguish strains. Recently, nucleotide sequence of 16 S RNA from the small ribosomal subunit has been used to classify and identify a variety of microorganisms. We report nucleotide sequences from portions of the 16 S ribosomal RNA from Frankia strains AcnI1 isolated from Alnus viridis ssp. crispa (Ait.) Turrill and PtI1 isolated from Purshia tridentata (Pursh) DC. The number of nucleotide base substitutions and gaps we find more than doubles the previously reported sequence diversity for the same variable regions within other strains of Frankia.  相似文献   
5.
The effect of NO2 fumigation on root N uptake and metabolism was investigated in 3-month-old spruce (Picea abics L. Karst) seedlings. In a first experiment, the contribution of NO2 to the plant N budget was measured during a 48 h fumigation with 100mm3m?3 NO2. Plants were pre-treated with various nutrient solutions containing NO2 and NH4+, NO3? only or no nitrogen source for 1 week prior to the beginning of fumigation. Absence of NH4+ in the solution for 6d led to an increased capacity for NO3? uptake, whereas the absence of both ions caused a decrease in the plant N concentration, with no change in NO3? uptake. In fumigated plants, NO2 uptake accounted for 20–40% of NO3? uptake. Root NO3? uptake in plants supplied with NH4+plus NO3? solutions was decreased by NO2 fumigation, whereas it was not significantly altered in the other treatments. In a second experiment, spruce seedlings were grown on a solution containing both NO2 and NH4+ and were fumigated or not with 100mm3m?3 NO2 for 7 weeks. Fumigated plants accumulated less dry matter, especially in the roots. Fluxes of the two N species were estimated from their accumulations in shoots and roots, xylem exudate analysis and 15N labelling. Root NH4+ uptake was approximately three times higher than NO3? uptake. Nitrogen dioxide uptake represented 10–15% of the total N budget of the plants. In control plants, N assimilation occurred mainly in the roots and organic nitrogen was the main form of N transported to the shoot. Phloem transport of organic nitrogen accounted for 17% of its xylem transport. In fumigated plants, neither NO3? nor NH4+ accumulated in the shoot, showing that all the absorbed NO2 was assimilated. Root NO3? reduction was reduced whereas organic nitrogen transport in the phloem increased by a factor of 3 in NO2-fimugated as compared with control plants. The significance of the results for the regulation of whole-plant N utilization is discussed.  相似文献   
6.
The dissolution potential of five cyanogenic bacteria was studied at 25°C during 32 days using granite material from the Damma glacier (Central Alps, Switzerland) as the sole source of nutrients. The bacterial species Pseudomonas fluorescens and Pseudomonas sp. CCOS 191 were the most effective to exudate various organic acids and consequently mobilized Fe. The molecular mechanisms include both, proton-promoted and ligand-promoted dissolution, preferentially at pH below 5 and in the pH range between 5.0 and 5.8, respectively. In addition, bacterially produced cyanide plays a minor role through the formation of soluble hexacyanoferrate complexes. To our knowledge, this study is the first that reveals the direct measurement of metal-cyanide complexes formed during biotic granite weathering.  相似文献   
7.
In our previous studies, we observed the biological control effect of lactic acid bacteria strains (LABs) KLF01, KLC02 and KPD03 against different plant pathogenic bacteria in vitro against Ralstonia solanacearum, and strains KLF01 and KLC02 against Pectobacterium carotovorum under greenhouse and field experiments, respectively. In this study, we observed the efficacy of these bacteria against bacterial spot pathogen (Xanthomonas campestris pv. vesicatoria) and their plant growth-promoting activities in pepper (Capsicum annuum L. var. annuum), under greenhouse and field conditions. LABs significantly (P < 0.05) reduced bacterial spot on pepper plants in comparison to untreated plants in both the greenhouse and the field experiments. The plant growth-promoting effect of LABs on pepper varied; some strains had a significant effect on growth promotion (P < 0.05) compared with untreated plants, while some showed no significant effect in the greenhouse and field experiments. Additionally, LABs were able to colonise roots, produce indole-3-acetic acid (IAA), siderophores and solubilise phosphate. These findings indicate that application of LABs could provide a promising alternative for the management of bacterial spot disease in pepper plants and could therefore be used as a healthy plant growth-promoting agent.  相似文献   
8.
Understanding the mechanisms of resilience of coral reefs to anthropogenic stressors is a critical step toward mitigating their current global decline. Coral–bacteria associations are fundamental to reef health and disease, but direct observations of these interactions remain largely unexplored. Here, we use novel technology, high-speed laser scanning confocal microscopy on live coral (Pocillopora damicornis), to test the hypothesis that corals exert control over the abundance of their associated bacterial communities by releasing (‘shedding'') bacteria from their surface, and that this mechanism can counteract bacterial growth stimulated by organic inputs. We also test the hypothesis that the coral pathogen Vibrio coralliilyticus can evade such a defense mechanism. This first report of direct observation with high-speed confocal microscopy of living coral and its associated bacterial community revealed a layer (3.3–146.8 μm thick) on the coral surface where bacteria were concentrated. The results of two independent experiments showed that the bacterial abundance in this layer was not sensitive to enrichment (5 mg l−1 peptone), and that coral fragments exposed to enrichment released significantly more bacteria from their surfaces than control corals (P<0.01; 35.9±1.4 × 105 cells cm−2 coral versus 1.3±0.5 × 105 cells cm−2 coral). Our results provide direct support to the hypothesis that shedding bacteria may be an important mechanism by which coral-associated bacterial abundances are regulated under organic matter stress. Additionally, the novel ability to watch this ecological behavior in real-time at the microscale opens an unexplored avenue for mechanistic studies of coral–microbe interactions.  相似文献   
9.
Van Dommelen  A.  Van Bastelaere  E.  Keijers  V.  Vanderleyden  J. 《Plant and Soil》1997,194(1-2):155-160
This paper describes molecular aspects of Azospirillum-plant root association with respect to nitrogen flux and carbon utilization. In the first part, biochemical and genetic data are reported on the transport of ammonium and methylammonium in A. brasilense cells. Ammonium excreting A. brasilense mutants reported so far appear to result from alterations in genes encoding for enzymes involved in ammonium assimilation. Solid genetic evidence is given on the occurrence of a postulated ammonium transporter in A. brasilense. In the second part, biochemical and genetic evidence is likewise given for the occurrence of a high-affinity uptake system for D-galactose in A. brasilense. A sugar- binding protein that is part of this uptake system is required for chemotaxis of A. brasilense towards particular sugars, including D-galactose.  相似文献   
10.
《Cell》2021,184(23):5728-5739.e16
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号